A Direct Digital Synthesizer with Arbitrary Modulus

Suppose you have a system with a 10 MHz sample clock, and you want to generate a sampled sinewave
at any frequency below 5 MHz on 500 kHz spacing; i.e., 0.5, 1.0, 1.5, ... MHz. In other words, f = k*fs/20,
where k is an integer and fs is sample frequency. This article shows how to do this using a simple Direct
Digital Synthesizer (DDS) with a look-up table that is at most 20 entries long. We'll also demonstrate a
Quadrature-output DDS. A note on terminology: some authors call a DDS a Numerically-Controlled
Oscillator (NCO).

Disclaimer: | have not implemented this DDS in hardware, so there could be problems with the scheme
that | have not anticipated.

Background [1,2]

A continuous-time sinewave with frequency fo is given by y = sin(2mntfot + ¢o). For a sampled signal, we
replace t by nTs, where n is the sample number and Ts is the sample time. Letting ¢o = 0, we have:

y = sin(2mntfonTs)
The phase of the signal is:

O =2nfonTs  rad (mod 2m),
Or
O =fonTs cycles (mod 1) (1)

The phase wraps every 2m radians = 1 cycle. Equation 1 shows that the phase increases (accumulates)
by foTs every sample. So we can calculate the phase using an accumulator with input = foTs, as shown in
Figure 1a. The value of ¢ has a range of 0 to 1 (cycles). We generate the sinewave from the phase using
a look-up table (LUT). What we’ve just described is a basic DDS. Note that another option to generate
the sinewave from the phase not discussed here is the CORDIC algorithm [3].

Figure 1b adds quantization in the accumulator register, the phase, and the LUT entries. The
accumulator input has 2 steps over a range of 0 to 1, giving a frequency step Af = f;/2, where fs is the
sample frequency. The resulting output frequencies are fs/2¢, 2fs/2¢, 3fs/2¢ ... Given the 2¢ steps, we can

say the DDS has a modulus of 2. As an example, if C= 24 bits, and fs= 10 MHz, the frequency step is:
Af = 10E6/2% = 0.59605 Hz.

This frequency step is impressively small. However, if you want to program a frequency that is not on
one of the steps, such as fs/10, there will be a small frequency error of up to Af/2.



If we were to maintain the 24 bits of phase, the LUT size for this example, taking symmetry of the sine

into account, would be %*22% = 222 = 4,194,304 entries. To avoid such a large LUT, the phase is normally
guantized to P < C bits. The phase quantization results in so-called phase truncation spurs in the output
spectrum. A typical value of P used in DDS chips is 15 bits, which, taking advantage of the symmetry of
the sine, gives LUT size of 213= 8192 entries.

You can see that a standard DDS is not a perfect solution to our problem of generating f, = k*fs/20: it
does not produce the exact frequency; it requires a not-so-small LUT; and it has spurs due to truncation
of the phase. (Note that there are techniques for reducing phase-truncation spurs [4]).
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Figure 1. a) Implementation of Equation 1. b) DDS with quantization.



DDS with Arbitrary Modulus

A DDS with modulus other than 2¢can address the shortcomings of a conventional DDS for our
application.

If we multiply both sides of Equation 1 by an integer L, we get:

LD =LfonTs  (mod L)
This equation can be implemented by modifying the accumulator in Figure 1a as shown in Figure 2.
Here we require m to be an integer between 0 and L-1, so there are L entries in the LUT, where L is not

restricted to 2€. The input L*fo/fs is an integer:

L*fo/fs =k (2)
or fo = k*fs/L (3)

Since k is an integer, fo has a step size of Af = fs/L. For a given Af and fs, we have:
L = fs/Af (4)

Letting fs = 10 MHz and Af= 0.5 MHz, we get L= 20. The number of bits required for the accumulator is
found by taking logz(L) and rounding up to the next integer. For L= 20, we need 5 bits.

As shown in Figure 2, m = L, so the phase is = m/L. Simplistically, the LUT entries are:

u(m) =sin(2mm/L), m=0:L-1 (5)
However, for fixed point entries, we need to round the values of u(m) and prevent overflow when m =
L/4 and u(L/4) =sin(r/2) = 1.0. (For example, if the number of bits D= 8, the largest allowable entry is

not 1.0 but (27 -1)/27 =127/128 =01111111). We can compute the fixed-point entries as:

u(m)= (1-¢) *sin(2tm/L), m=0:L-1
LUT(m) = round(u(m)*2°1)/2°1 (6),

Where D is the number of bits in the 2’s complement LUT entry and € << 1. | used &= 1/2°2,
Multiplication by 1 — € makes the LUT entry for m = L/4 less than 1.0 after rounding.

For our case, with L= 20, the LUT values are plotted in figure 3. The LUT contains one cycle of a
sinewave evaluated over L samples. Note that when L is a multiple of 4, it is possible to reduce the LUT
size to L/4 entries by taking the symmetry of the sinewave into account.
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Figure 2. DDS with arbitrary modulus
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Figure 3. Sine look-up table for L= 20

Let’s look at the behavior of our example DDS, with fs = 10 Hz and Af = 0.5 Hz. The Matlab code is listed
in the Appendix. To start out, let the output frequency fo= 0.5 Hz. From equations 2 and 4, k = fo/Af, so
k=1. Asshown in Figure 4, m increments through all the integers from 0 to L-1, then repeats. So the
DDS just steps through every entry of the LUT. Also shown in Figure 4 is the phase ¢ = m/L cycles, and
the sampled sinewave output.

Now, if we let fo=1Hz, k=2. Thusm =0, 2, 4, ... and the DDS steps through every 2" entry of the LUT,
as shown in Figures 5a and 5b.



If we let fo=1.5Hz, k=3. Thusm=0, 3, 6, ... and the DDS steps through every 3™ entry of the LUT, as
shown in Figures 5c and 5d. As can be seen in Figure 5c, it takes three cycles for the phase sequence to
repeat.

For L= 20, the allowable output frequencies fo that are less than fs/2 are: 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, and
4.5 Hz, corresponding to k=1: 9. For L even, there are L/2 -1 allowable values of fo.

Since accumulator output m is always an integer, there is no phase truncation error. The only error in
the output y is due to rounding of the LUT entries. Figure 6 compares spectra for fo = 1.5 Hz of a
conventional DDS with 15-bits of phase to our DDS with L= 20 (4.3 bits of phase). Both have 16-bit LUT
entries. The modulus 20 DDS has lower spurious, with the worst spur at about -105 dB with respect to
the level at 1.5 Hz.

Finally, note that it is also possible to make a DDS with an arbitrary programmable modulus. The
approach involves using two accumulators [5,6].
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Figure 4. DDS with L=20 and fs = 10 Hz.
a) Accumulator output m for fo= 0.5 Hz. b) Phase in cycles. c) LUT outputy.
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Figure 5. DDS with L=20 and fs = 10 Hz.

a) Accumulator output m for fo = 1.0 Hz, and
b) LUT outputy
¢) Accumulator output m for fo = 1.5 Hz, and
d) LUT outputy
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Figure 6. Spectra of conventional DDS and DDS with modulus L= 20.

fo=1.5Hzand fs = 10 Hz.

Left: Conventional DDS with 15 bits of phase and 16-bit LUT entries.
Right: DDS with L= 20 (4.3 bits of phase) and 16-bit LUT entries.

Quadrature Output DDS

A quadrature output DDS has both cosine and -sine outputs. The cosine phase leads sine phase by /2

radians = % cycle. Given m as the LUT address for a sine, the address for the cosine is:

p=m+L/4 mod(L)

where L is the DDS modulus = LUT length, which must be a multiple of 4. We can modify the Matlab

code in the Appendix to compute both sine and cosine. Here is the modified for loop:

sine(l)=
cosine (1)
m= 0;
for n= 2:N
r = k + m;
m= mod (r, L) ;
p= mod (m+ L/4,L);
sine(n)= lut (m+1);
cosine (n)= lut (p+l);

0;
= 1;

o° oP

o°

sine output
cosine output

oe

end

LUT address/ sine
LUT address/ cosine



The Quadrature DDS outputs for L= 20, fs= 10 Hz, and fo = 1 Hz are shown in Figure 7.
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Figure 7. Quadrature DDS with L= 20, fs= 10 Hz, and fo =1 Hz.

a) cosine address p. b) cosine output. c)sine address m.

Simplest DDS with L=4

If we let L= 4, there is only one output frequency below fs/2:

fo = k*fs/l_ = fs/4 (k= 1)

The LUT sine values from Equation 5 are:

LUT = [0 sin(r/2) O sin(3m/2)]
=[010-1]

The cosine values are [1 0 -1 0].

d) -sine output.



A quadrature L= 4 DDS using cosine and -sine can be used to down-convert a signal centered at fs/4 to

complex baseband [7,8]. Since all LUT values are 0 or +/-1, no multiplier is needed to perform the

frequency conversion.
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Appendix Matlab Code for DDS with Modulus = 20

o\°

dds mod20.m 5/30/19 Neil Robertson
DDS with modulus L = 20

output frequency f0 = k*fs/L

Plot LUT, phase, and output

o oe

o\

fs= 10; % Hz sample freqg
df= 0.5; % Hz desired freq step
L= fs/df % length of LUT= modulus of accumulator

if mod(L,1)~=0
error (' fs/fstep must be an integer')
end

% create LUT with one full cycle of sinewave (not using symmetry)

D= 16; % bits LUT entries quantization
m= 0:L-1;
phi lut= m/L; % cycles phase

epsilon= 1/2~(D-2);
u= (1 - epsilon) *sin(2*pi*phi lut);

lut= round(u*2”(D-1))/(2~(D-1)); % quantize lut entries

% DDS

N= 30; % number of output samples

f0= 0.5; % Hz output frequency (must be multiple of df)
k= L*f0/fs; % integer input to DDS

y(1)= 0;

m= 0;

r = k + m;

m= mod (r, L) ; % LUT address

y(n)= lut(m+l); output
phi(n)= m/L; % cycles phase

oe

nd

o oe (D

oe

Plotting

o\°

o\°

plot LUT

stem(0:L-1,1lut),grid

axis ([0 32 -1 11])

xlabel ('m'),ylabel ('lut'), figure

%

$plot m and phi

subplot (311),plot (0:N-1,phi*L,"'.~-"', 'markersize',9),grid
axis ([0 N 0 20])

xlabel('n'),ylabel ('m")

subplot (312),plot(0:N-1,phi,'.~-"', 'markersize',9),grid
axis ([0 N O 17)

xlabel('n'),ylabel ('phi (cycles) = m/L")

°



% plot y along with "continuous" sinewave y2 in grey

fs plot= fs*16; % fs of "continuous" sine
Ts= 1/fs plot;
Len= 16*N;

i= 0:Len-1;
y2= sin(2*pi*f0*i*Ts); % "continuous" sine

subplot (313),plot(0:N-1,y,"'."', 'markersize',9),grid
hold on

plot(i/16,y2, 'color',[.5 .5 .5])

axis ([0 N -1 17)

xlabel('n'"),ylabel ('y")
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